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ABSTRACT
We propose a semi-analytical modeling of smoothed laser beam deviation induced by plasma flows. Based on a Gaussian description of
speckles, the model includes spatial, temporal, and polarization smoothing techniques, through fits coming from hydrodynamic simulations
with a paraxial description of electromagnetic waves. This beam bending model is then incorporated into a ray tracing algorithm and carefully
validated. When applied as a post-process to the propagation of the inner cone in a full-scale simulation of a National Ignition Facility (NIF)
experiment, the beam bending along the path of the laser affects the refraction conditions inside the hohlraum and the energy deposition, and
could explain some anomalous refraction measurements, namely, the so-called glint observed in some NIF experiments.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0124360

I. INTRODUCTION

Many experiments conducted in multi-kilojoule laser facili-
ties, whether they concern astrophysical phenomena, high-energy-
density physics,1 or inertial confinement fusion (ICF),2–4 bring
critical insights into matter under extreme conditions. In these
facilities, energetic laser beams are used to heat and compress
the matter to millions of degrees and mega- to gigabar pressures.
The predictability of these experiments requires a precise under-
standing of laser–plasma interactions, such as the mechanisms
responsible for the energy deposition and those responsible for the
growth of various instabilities such as stimulated Raman or Brillouin
scattering,5–8 cross-beam energy transfer,9 two-plasmon decay,10,11

collective scattering,12–14 and self-focusing.15

Furthermore, optical smoothing techniques combining
random-phase plates (RPPs) and smoothing by spectral dispersion
(SSD), available at the Laser Méga Joule (LMJ) facility, the National
Ignition Facility (NIF), the Laboratory for Laser Energetics (LLE),
and SG-III-class lasers, improve the laser intensity profile.16,17

These techniques reduce the spatial coherence (through RPPs)
and temporal coherence (through SSD) of the light, resulting in
intensity fluctuations on the scale of a few wavelengths and lasting
a few picoseconds: the so-called speckles. Polarization smoothing
(PS), which consists in splitting the pulse into two uncorrelated
superimposed beams with perpendicular polarizations, may also be
used. Together, these smoothing techniques will in turn affect the
laser–plasma interactions on macroscopic scales, such as the energy
deposition region,18,19 the scattering direction of the light wave,20–25

and the amount of expected reflectivity.26–29 Accounting for the hot-
spot dynamics thus requires to reconcile the sub-micrometer and
sub-picosecond physics of the RPP/SSD beam with the millimeter
size and nanosecond duration of the experiments. In this context,
a hydrodynamic description of the plasma can be coupled with an
approximated Maxwell solver.30–34 However, this formalism fails to
capture self-consistently the Landau damping of acoustic waves or
other kinetic effects and may turn out to be numerically unsuitable
whenever multidimensional effects, solid-density physics, or
radiative phenomenons arise.
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In such systems, hydrodynamic codes rest on a rough descrip-
tion of light, such as the classical ray tracing scheme,35–38 which,
in its native form, only captures the wave refraction and basic
energy deposition. Accurate description, by the ray tracing scheme,
of simple light properties such as the intensity of the wave and
its local spectrum, is still an active area of research.39–42 Although
great efforts have been made to improve these schemes by includ-
ing back or side scattering of the light caused by wave mixing
processes,41,43 modeling of the speckle-scale physics remains largely
unexplored.44–47

Although the flow-induced deviation may be entangled with
other wave mixing processes,25 this study addresses the beam bend-
ing of a laser beam48–51 under the assumption that other instabili-
ties, such as filamentation and forward/backward Brillouin/Raman
scattering, are negligible. The beam bending occurs when the laser-
driven density fluctuations are advected by a flow, resulting, owing
to a wave-guide effect, to deflection of the electromagnetic wave
from its original axis of propagation, toward the flow direction. As
this effect may take place in a perfectly homogeneous plasma, the
beam deflection may add up to the well-known refraction of light
caused by density gradients.

In Sec. II, we first briefly recall the kinetic and fluid modeling
of Ref. 52, which predicts the deflection angle of a Gaussian laser
pulse, in both the transient and asymptotic regimes of the plasma
density response. The model is then extended in Sec. III to the cen-
troid deviation of a spatially (using RPP) and temporally (with SSD)
incoherent laser pulse, with the effect of polarization smoothing
by fits coming from three-dimensional (3D) Parax53 simulations.
Our model is incorporated into a ray tracing description of the
beam propagation and compared successfully with our numerical
results in Sec. IV. Then, the laser propagation under realistic indirect
drive ICF plasma conditions (NIF Shot N181209 from the Hybrid B
campaign54–57) is addressed and evidences a sensible impact of the
flow-induced deviation on the light energy path and energy depo-
sition. Our concluding remarks and perspectives are gathered in
Sec. V.

International system of units (SI) units are used throughout this
paper, the Boltzmann constant is dropped, temperatures are given in
eV, and vectors are denoted by bold symbols.

II. BEAM BENDING OF A SPATIOTEMPORALLY
INCOHERENT LASER PULSE
A. Beam bending in the transient regime

In Ref. 50, it is proved that in the small-angle limit, the trans-
verse averaged beam wavevector ⟨k�⟩k� can be related to the plasma
electron density fluctuations δne through

1
k0

d⟨k�⟩k�
dx

⋅ vd

∣vd∣
= −1

2
ne

nc
⟨∇�

δne

ne
⟩
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, (1)
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= ∫ dr� X(r)I(r)
∫ dr� I(r) , (2)

⟨X⟩k� =
∫ dk� X(k)I(k)
∫ dk� I(k) , (3)

where we have introduced k0 = 2π/λ0, nc, and vd, the main laser
wavevector, critical density, and flow velocity, respectively. More-
over, r� and k� are the position and wavevector transverse to
the main laser x direction. The transverse averages in real and
Fourier space, ⟨⋅⟩� and ⟨ ⋅ ⟩k� , respectively, are defined through
Eqs. (2) and (3). We assume hereinafter a perfectly homogeneous
plasma. The dependence of the normalized density fluctuations
on time and position, δne(t, r)/ne, will be assumed to follow the
linearized hydrodynamic equations. In the plasma rest frame and
after a transverse Fourier transform [defined hereinafter as f (ω, k)
= ∫ f (t, r)e−ik⋅r+iωtdr dt], the relation between the density fluctua-
tions and the laser intensity I(k) = I0 g(k) satisfies
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Here, we have introduced the sound speed cs

= [(ZiTe + 3Ti)/mi]1/2, the electron/ion mass and tempera-
ture me/i and Te/i, the normalized acoustic Landau damping rate
γ0 = ν/∣k∣cs, the laser group velocity vg = c

√
1 − ne/nc, and the light
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introduced in Ref. 52, is an ad hoc correction that ensures con-
vergence to the kinetic asymptotic limit for highly Landau-damped
plasmas. We have also introduced the Mach number M0 = vd/cs and
𝒵′, the first-order derivative of the plasma dispersion function.58

Finally, the factor Ak on the right-hand side of Eq. (4) accounts
for nonlocal thermal effects on the density fluctuation amplitude59,60

and can be written as

Ak(u) =
1
2
+ Zi(

0.074
u2 + 0.88

u4/7 +
2.54

1 + 5.5u2 )Ω,

u = ∣k�∣λmfp

√
Zi,

Ω =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣k� ⋅ vd∣/νei < 1,

0 elsewhere,

(10)

where λmfp is the electron mean free path and where A∣k∣ = 1/2 in
the collisionless limit. As mentioned in Ref. 61, this correction can
be used provided the acoustic wave frequency ∣ωs∣ = ∣kvd∣ remains
smaller than the electron–ion collisional frequency νei (momen-
tum exchange). This condition is contained in the factor Ω, which
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ensures that Ak recovers its collisionless value when the condition
is not fulfilled. Although easily introduced in our theoretical esti-
mates, this factor remains far more challenging to implement in a
self-consistent numerical modeling where other laser–plasma effects
are accounted for, in which case Ω is set to unity (see Sec. II B).
Likewise, the Landau damping factor γ0 in Eqs. (7) and (12) may
be expressed in the collisionless limit (Landau) [Eq. (10) in Ref. 52]
as in Sec. III. When collisional effects are not negligible, the fit intro-
duced in Ref. 62 will be used, leading to a dependence of γ0 on ∣k∣, as
in Sec. IV B.

In the laboratory frame, the solution of Eq. (4) for γ0 < 1, with
the initial conditions δne(t = 0) = ∂tδne(t = 0) = 0, reads

δne(k, t)
ne

= αkA∣k∣
I0g(k)
ncvgTe

f (k, t), (11)

f (k, t) = 1 + a+eg+cs ∣k∣t − a−eg−cs ∣k∣t , (12)

a± =
−iM0 cos(θ) − γ0 ∓ i

√
1 − γ2

0

2i
√

1 − γ2
0

, (13)

g± = −γ0 ± i
√

1 − γ2
0 − iM0 cos(θ). (14)

Here, M0 = ∣M0∣, where M0 and vd are assumed to be normal to
the main laser x axis. The combination of the above density fluc-
tuations, written in Fourier space, with Eq. (1) implies an inverse
Fourier transform and leads to

dθ
dx
= 1
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(15)

Hence, the estimation of ⟨eik⋅r�⟩� with Eq. (2) leads to the final
beam bending rate, and this depends on the Fourier transform of
the transverse intensity profile, g(k). References 48 and 50 assume
Gaussian beams, while Ref. 63 addresses RPP beams, in the asymp-
totic regime only. To avoid any assumption about the SSD beam

temporal spectrum, as in Refs. 64 and 65, we will simply relate the
averaged SSD beam centroid deflection to the speckle contributions
using Gaussian transient regime estimates.52

B. Gaussian speckle in three dimensions
Hence, using g(k) = exp(−k2σ2/8)with σ = λ0 f♯ and assuming

a y-aligned drift velocity, the deflection rate may be recast as

dθ
dx
= −ne

nc

I0

2vgncTe

1
σ
𝒢(t), (16)

with

𝒢 = σ3

8π
I∫

∞

−∞

dk k2Ake−k2σ2
/4

× ∫
π

0
dθ αk/ f [M0 cos(θ)] cos(θ) f (k, t). (17)

Figure 1(a) illustrates the temporal evolution of a single 3D
Gaussian speckle of f -number f♯ = 8 and wavelength λ0 = 0.35 μm
in a fully ionized carbon plasma as predicted by Eqs. (16) and (17).
As expected,52 the deflection is larger for a flow with M0 = 1 (red
lines) in the asymptotic limit t > 100 ps (where dθ/dx ≃ 0.2 rad/mm,
red solid line) than for M0 = 0.8 or 1.2 (where dθ/dx ≃ 0.17 rad/mm
and ∼0.02, blue and black solid lines, respectively). In the transient,
however, the bending at resonance remains slightly weaker than for
the case M0 = 0.8 (black lines) or 1.2 (blue lines, t < 10 ps). As a
corollary, the resonance of the hot spot bending rate around a Mach
number of the order of unity is not noticeable during the transient.

C. Spatially and temporally smoothed laser beam
The propagation of a spatially and temporally smoothed laser

beam in a flowing plasma, as shown in Ref. 44, exhibits a deflection
of its centroid that can be related to the contribution of hot spots.
Assuming that the speckles are independent and of Gaussian form,
we may now relate the time-averaged beam centroid deflection rate
to the contribution of the speckles (subscript s) through

dθSSD

dx
= ⟨∑

s

dθs

dx
⟩

t

, (18)

FIG. 1. (a) Deflection rate dθ/dx as a function of time as predicted by Eqs. (16) and (17) for a C6+ plasma for various Mach numbers in the fluid [Eq. (7)] and kinetic formalism
[Eq. (5)]. (b) Gaussian deflection rate averaged over τSSD = 7 ps, ⟨dθ/dx⟩τSSD , as predicted by Eqs. (19) and (23) (using S = 1 and β = 1) for He2+ (blue lines), C6+ (red
lines), and Au50+ (black lines) plasmas as a function of Mach number. Three-dimensional predictions obtained with Hera are superimposed as red circles (see Appendix A
for details). The laser has an averaged intensity of I0 = 1 × 1015 W/cm2, and λ0 = 0.35 μm, f♯ = 8, Te = 2.5 keV, T i = 1 keV, and ne = 0.1nc .
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where ⟨X⟩t is the average of X over a 2π/ωm period (where ωm is the
main modulation frequency of the SSD device). The speckle bend-
ing rate dθs/dx stems from Eq. (16). Owing to diffraction, σ and I0

become σ[1 + (x − xs)2/z2
c ]1/2 and Is/[1 + (x − xs)2/z2

c ]3/2, respec-
tively. The speckle reaches its maximum intensity Is at the position
xs and has a Rayleigh length of zc = π f 2

♯
λ0, leading to

dθSSD

dx
= −S

n0

nc

I0

2vgncTe

⟨𝒢⟩τSSD
σ

, (19)

where I0 now denotes the beam-averaged intensity and where

S =∑
s

Is/I0

[1 + (x − xs)2/z2
c ]3/2

. (20)

The factor S introduced in Eqs. (19) and (20) incorporates the
speckle-dependent factors such as the speckle intensities, spatial
profiles, and positions. As S takes account of the complex RPP-
induced speckle dynamics, we consider it as a parameter to be fitted
from the paraxial simulations. This procedure further smooths out
the hot spot contributions over the whole pulse. This approxima-
tion neglects the speckle disparities resulting from the variability
of their intensity. Furthermore, we neglect any significant modi-
fication of the speckle distribution during the beam propagation,
since this could affect the value of S. To mimic the effect of the
SSD on the beam bending rate, the speckle pattern is assumed
to last a time τSSD, proportional to the coherence time TSSD. The
latter is related to the modulation depth Δ (defined hereinafter
at 3ω) and to the modulation frequency ωm of the SSD device
through TSSD = 2π/ωm(2Δ + 1). On introduction of the factor β, the
parameter τSSD, referred to as the speckle coherence time, can be
written as

τSSD = β
2π

ωm(2Δ + 1) = βTSSD. (21)

This second factor, of the order of unity, represents the efficiency
of SSD in beam bending and will be deduced from the paraxial
simulations.

We introduce the temporal mean of a function X(t) over an
SSD period as

⟨X⟩τSSD =
1

τSSD
∫

τSSD

0
X(t) dt, (22)

Equation (17) leads to

⟨𝒢⟩τSSD ≃
σ3

8π
I∫

∞

−∞

dk k2Ake−k2σ2
/4

× ∫
π

0
dθ αk/ f [M0 cos(θ)] cos(θ)

× (1 + a+
eg+cs ∣k∣τSSD − 1
g+cs∣k∣τSSD

− a−
eg−cs ∣k∣τSSD − 1
g−cs∣k∣τSSD

). (23)

For the sake of simplicity, we propose in Appendix D a fully analyt-
ical fit of the above function, obtained in the fluid framework and
valid in the regime 0.007 ≤ γ0 ≤ 0.05 and ∣M0∣ < 3 for a monospecies
plasma, illustrated in Figs. 7(a)–7(d).

The mean deflection angle is related to the set of Eqs. (18),
(19), and (23). The dependences of the above predictions on the
Mach number are illustrated in Fig. 1(b) for He2+ (blue lines),

C6+ (red lines), and Au50+ (black lines) 10% critical plasmas (with
Te = 2.5 keV and Ti = 1 keV) and for a speckle coherence time
τSSD = 7 ps. The deflection rate is an increasing function of the ion-
ization number, owing to the thermal correction of Eq. (10). By
virtue of Sec. II B, the deflection rate is not peaked around M0 = 1,
owing to the short coherence time compared with the transient. A
higher density causes the mean free path to decrease, thus increasing
the local energy deposition and thereby enhancing the hole boring.
The regime of validity of Eq. (10) (ω = kvd < νei), incorporated in
the factor Ω, may be assessed by estimating the critical Mach num-
ber Mc = νei/[csk0/(2 f♯)] above which the thermal correction is no
longer valid. When Zi = 2 (we obtain Mc ∼ 0.7), the factor Ak is
∼20% above its collisionless value, indicating a poor impact of ther-
mal effects whatever the value of Ω. However, the carbon deflection
rates exhibit slight inflections located around M0 =Mc ≃ 1.7, due
directly to the condition ω = kvd < νei. Additionally, the large value
of Mc ≃ 25 obtained for the Au50+ case demonstrates the validity of
the thermal corrections of Eq. (10) in this material.

Because of the very large values of ZiTe/Ti in the gold case
(ZiTe/Ti = 125), the kinetic and fluid 3D deflection rates (black
and red lines respectively) are in agreement.52 For the same rea-
son, accounting for an accurate distribution of gold ionization levels
under non-local-thermodynamic-equilibrium (NLTE) conditions as
predicted by DEDALE66 [in the multiple-ion-species formulation of
Eq. (5)] leads to only a small reduction (by ∼10%) of the final bend-
ing rates compared with the single-fluid average ionization number
model as used in this study.

Finally, we performed five 3D hydrodynamic simulations with
a paraxial solver (Hera32,67) of a Gaussian beam propagating in a C6+

10%-critical plasma with the laser and plasma parameters of Fig. 1(b)
and for various Mach numbers. The simulation parameters and the
method of measuring the deflection rates are detailed in Appendix A.
The thermal corrections of Eq. (10) (with Ω set to 1) have been
accounted for. The average over the first 7 ps of the beam centroid
deflection angles [⟨⟨dθ/dx⟩�⟩t , Eqs. (2) and (22)] at the exit plane of
the simulations are illustrated as red circles in Fig. 1(b) and agree
very well with the corresponding theoretical prediction (obtained
with S = β = 1) represented by the dashed red line. This confirms the
validity of Eqs. (19) and (23) for a Gaussian beam. In the following,
the time averaged centroid deflection rate of a SSD beam will be re-
lated to the above Gaussian speckle predictions by fitting the two sca-
lar variables S and β using dedicated 3D paraxial numerical results.

III. FIT AND VALIDATION OF THE BENDING RATES
BY PARAXIAL HYDRODYNAMIC SIMULATIONS

We aim at finalizing and validating our speckle-scale SSD beam
bending model in light of paraxial 3D Parax53 hydrodynamic simu-
lations. We will thus use in this section the fluid plasma response in
our model [Eq. (7)]. More realistic predictions, such as in Sec. IV B,
will then be made using the kinetic deflection rates. Ideally, the
kinetic flow-induced deflection should be fitted with kinetic codes
(such as particle-in-cell codes)—a kind of simulation that is still out
of reach with present supercomputers. In the Parax code, the lin-
ear Landau damping operator is computed in Fourier space,50,68,69

and the light is propagated through a paraxial solver. Parax uses a
linearized hydrodynamics module that is applied transversely to the
main laser direction and that will moderate the subsequent required
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numerical load. This approach is consistent with the fact that the
density perturbation amplitudes considered in our model are always
weak. For the sake of simplicity and for the purposes of comparison,
the bremsstrahlung energy deposition is also neglected. Note that
as the pulse deflection is reduced by its loss of temporal coherence,
large simulation domains have to be considered in order to obtain
clean quantitative comparisons. The thermal corrections of Eq. (10)
are accounted for in our 3D simulations.

Parax has specific field injections and diagnostics to correctly
simulate and characterize the different smoothing techniques. To
reach more realistic ICF conditions than those in Ref. 52, the choice
has been made to use a laser wavelength of λ0 = 0.35 μm. The focal
spot is located at the center of the simulation domain, xfoc = 1 mm,
with a f -number f♯ = 8.88. The spectral dispersion has a modula-
tion frequency ωm = 2π × 14.25 GHz. The laser beam with I0 = 2
× 1014 W/cm2 propagates through a 2 mm flowing plasma with
vd/cs = 0.9 and composed of helium with ne = 0.1nc, Te = 2 keV, and
Ti = 500 eV while accounting for the thermal corrections of Eq. (10).
The simulation details are given in Appendix B. Different smoothing
configurations have been simulated.

Owing to the phase modulation, the center of the beam oscil-
lates as soon as it has been injected, with a period corresponding to
the modulation frequency, 2π/ωm ≃ 70 ps. This effect leads to peri-
odic motion of the centroid at the simulation exit plane, as shown in
Fig. 2. Note that the SSD beam bending model that we propose only
predicts the temporal average of the beam centroid deflection, thus
neglecting the motion of the spatial envelope.

The dependence of the beam’s deflection angle on the
f-number f♯ is illustrated in Fig. 3(a). Note that we varied the
f-number, keeping the mean intensity I0 constant. Within the ansatz
of Gaussian beam deflection, the latter should be proportional to
f♯ [see the integration of a Gaussian beam bending deflection rate
over a Rayleigh length, Eq. (31) of Ref. 52]. However, under the
assumption that S can be replaced by a constant, Eq. (19) predicts
θSSD ∝ 𝒢(τSSDcs/ f ♯λ0)/ f ♯ = o(1/ f ♯), as illustrated by the solid line
in Fig. 3(a). Furthermore, although the speckle-scale contribution to
the deflection increases with f♯, the inter-speckle distance and the
transient regime amplitude both depend on f♯. Hence, smoothed
over the whole SSD beam, the resulting centroid deviation decreases
faster than 1/ f♯ [see the dashed line in Fig. 3(a)]. Figure 3(a) also

FIG. 2. Temporal evolution of the beam centroid defined though Eq. (2) in the 3D
Parax simulations with ωm = 2π × 14.25 GHz and for Δ = 5.1 for TSSD �vd (blue
line), LSSD (green line), TSSD ∥vd (red line), and TSSD �vd + PS (magenta line).

FIG. 3. Centroid displacement after 2 mm of propagation as predicted by the the-
ory (lines) and by simulations (symbols). The plasma is composed of He2+ with
Te = 2 keV, ZiTe/T i = 8, M0 = 0.9, and I0 = 2 × 1014 W/cm2. In (a), the 2D cen-
troid displacement Δy is plotted as a function of f♯ with a fixed TSSD = 3.7 ps (or a
modulation depth of Δ = 9), while in (b), f♯ = 8.88 is fixed and TSSD varies. In (a),
the predictions from the ray tracing scheme and from Eq. (19) with S = 1.7 and
β = 2 are shown by the triangles and the black solid line, respectively. A curve of
y ∝ 1/ f♯ is superimposed as the black dashed line, while the results of the 3D
paraxial Parax simulation for the case TSSD �vd are shown by the black circles.
In (b), the predictions of Eq. (45) of Ref. 65 are shown by the red dashed line.
The cases TSSD ∥vd , TSSD �vd , and LSSD correspond to (S, β) = (1.7, 1),
(1.7, 2), and (S, β) = (6, 0.8), respectively. The case with PS corresponds to
(S, β) = (0.8, 3).

indicates that if the beam’s effective f -number f♯ were to decrease,
as is to be expected when plasma smoothing occurs,70 the resulting
flow-induced deviation should be exacerbated.

We may now fit our model with the most relevant smoothing
techniques in the light of the paraxial simulations performed with
the Parax code.53 In the case of 1D transverse smoothing by spec-
tral dispersion (TSSD) oriented normally to the flow direction, our
numerical results, represented by the red triangles in Fig. 3(b), con-
firm that the increase in SSD modulation depth (i.e., the decrease in
TSSD) reduces the amount of beam bending. Moreover, using S = 1.7
and β = 2 (solid lines) correctly reproduces the centroid deviations.
Equation (45) of Ref. 65, represented by the red dashed line, predicts
the deflection of a beam assuming a Gaussian frequency spectrum.
Its spectral width is thus narrower than for a SSD laser beam. Conse-
quently, the dependence of beam bending on the speckle coherence
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time is too steep and the predictions overestimate our numerical
results for τSSD ≳ 5 ps.

For the case in which the TSSD direction is parallel to the flow,
Ref. 65 has found a significantly smaller deflection rate. The corre-
sponding Parax simulations [crosses in Fig. 3(b)] exhibit a deflection
rate roughly five times smaller than in the perpendicular configura-
tion. In this case, the theoretical predictions with S = 1.7 and β = 1
give good agreement (dot-dashed line). Those two cases confirm that
for a beam smoothed by 1D transverse SSD, such as on the NIF,
different deviations are to be expected, depending on the direction
of the flow relative to the smoothing direction. Indeed, when the
direction of the spectral dispersion is perpendicular to the flow, the
beam bending rate depends exclusively on the value of the flow. By
contrast, when the direction of spectral dispersion is parallel to the
flow, the speckles are moving along the flow with supersonic veloci-
ties. The relevant parameter to assess beam bending is the difference
between the flow velocity and the transverse velocity of the speckles,
Δv. In TSSD, the time evolution of the speckle transverse velocity is
roughly sinusoidal.71 For example, for Δ = 18, the maximum trans-
verse velocity reaches vy/c ∼ 0.004, which corresponds to M ∼ 3.3.
Δv then evolves rather quickly as a function of time, and is most
of the time far from cs, where the maximum of the deflection rate
is located. This explains both the small time-averaged value of the
beam bending and the important centroid oscillations with time that
can be seen in Fig. 2, in which we represent the temporal evolution
of the beam centroid for Δ = 5.1 in the four simulated configurations
for beam smoothing.

Additionally, the impact of PS has also been addressed for
flows oriented normally to the transverse SSD direction. In our
simulations, the polarizations in the near field are in the diagonal
configuration, as for the inner cones on NIF.72 Illustrated by black
triangles in Fig. 3(b), our 3D Parax simulations agree fairly well
with our model for (S, β) = (0.8, 3). They also suggest a weak influ-
ence of the polarization smoothing on the bending rate when the
coherence time is small (TSSD < 4 ps). For longer coherence time
(Δ = 5.1), beam bending appears to be reduced when PS is used
in the simulation. This reduction can be attributed either to the
uncorrelated spatial speckle distribution between the two polariza-
tions or to another nonlinear effect. Indeed, when PS is not used,
beam spreading is noticeable in the simulation (the angular aperture
is increased by ∼20%, and the effective f♯ decreases from 9 to 7.5).
The increased beam bending in the absence of PS could be explained
by the decrease in f♯, as shown in Fig. 3(a). Given the weak influ-
ence of PS, the latter will be neglected when the flow is parallel to the
transverse SSD direction.

The dependence of the bending rate on the angle between the
flow component normal to the main laser axis and the SSD direc-
tion, ϕ, is outside the scope of this study. However, the value of β
evolves from 1 to 2 when ϕ = 0 (TSSD ∥vd) and ϕ = π/2 (TSSD �vd),
respectively. The formula β(ϕ) = 1 + ∣sin(ϕ)∣ could be well suited to
generalized the model to 3D.

Finally, another set of Parax simulations were performed with
longitudinal temporal smoothing (LSSD), as used on the LMJ facil-
ity. In this configuration, the phase shift imposed between the
different frequencies is radial, causing the speckles to move mainly
longitudinally. The results are represented by the red squares in
Fig. 3(b). The deflection rates are bounded by the two cases SSD �vd
and SSD ∥vd, with the advantage of presenting a value independent

TABLE I. Values of the fitting parameters S and β to be used in Eq. (19).

S β

3D TSSD �vd 1.7 2
3D TSSD �vd + PS 0.8 3
3D TSSD ∥vd 1.7 1
3D TSSD ∥vd + PS 1.7 1
3D LSSD 6 0.8

of the flow direction. The use in our model of (S, β) = (6, 0.8) leads
to fair agreement.

LSSD is more efficient than TSSD for small coherence times
only. The LMJ optimum modulation depth is close to 15 (defined for
λ0 = 0.35 μm) for ωm = 2π × 14.25 GHz, leading to τSSD ≃ 2.26 ps,
and so for the parameters of Fig. 3(b), the overall LMJ deflection
over 2 mm is ∼1 μm. The NIF currently uses τSSD ≃ 6.5 ps (ωm
= 2π × 17 GHz and Δ ∼ 4) with PS and thus corresponds to a larger
deflection than that for the LMJ configuration (∼10 and ∼3 μm
for flows perpendicular and parallel to the TSSD direction, respec-
tively). As a result, the beam bending mitigation in high-energy
laser experiments is efficiently done by increasing the laser’s tem-
poral spectral width. However, a large spectral width, apart from
the associated FM–amplitude modulation (AM) conversion effect
on laser performance,73,74 may lead to anisotropic deflection rates
when TSSD is used.

Before including the present theoretical calculations in a
ray tracing scheme, we gather in Table I the values of the fit-
ting parameters as obtained in the different geometries and SSD
configurations.

IV. ACCOUNTING FOR BEAM BENDING WITH
SPECTRAL DISPERSION IN RAY TRACING SCHEMES
A. Description and validation of the ray tracing
scheme

The time-averaged centroid deviation rate may naturally be
implemented in a ray tracing scheme as a correction to the well-
known refraction effect arising from the eikonal equation, by deflect-
ing each ray accordingly to Eq. (19). The ray direction and position
k and r, respectively therefore satisfy

dk
ds
= −k0

∇ne

2ncη
− k0S

n0

nc

I0

2vgncTe

⟨𝒢⟩τ SSD
σ

v�
∣v�∣

,

dr
ds
= kvg

ω0
,

v� = vd −
vd ⋅ k
∣k∣2 k,

(24)

where s is the ray abscissa and η the optical index.
The above model has been implemented in a new ray tracing

module of the hydrodynamic code Hera.32,67 For solving the ray
trajectory, we split the rectangular meshes of the 2D Hera hydro-
dynamic module into four triangles using their diagonals. In each
triangle, the density profile is assumed to be linear, allowing us
to have a continuous density profile throughout the simulation
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domain. Hence, solving the eikonal equation in each triangle allows
us to split the ray trajectory into a sequence of parabolas, ideal for
fast computing. Summing the contribution of each ray that passes
through a given mesh following Ref. 43, we obtain the local aver-
aged intensity I0 used in Eq. (24). To circumvent the nonlinearity,
we propose to use the local intensity calculated at the previous
hydrodynamic time-step.

To mimic the averaged intensity profile at and off best focus,
we define a lens position, hereinafter at xlens = −10 m from which
rays are shot. The rays’ departure y positions on the lens are cho-
sen randomly, and their initial direction points toward a randomly
distributed position at the focal plane (at x = xfoc), following the
measure given by the chosen intensity profile at best focus. Finally,
the rays are propagated in vacuum from the lens to the left bound-
ary condition of the simulation (at x = xBC). To avoid statistical bias,
the positions and directions of the rays are shot at the beginning of
each time steps. Note that this procedure, as used in Ref. 38, prevents
nonphysical thermal filamentation arising from systematic statistical
errors induced by the fluctuations in laser ray number per cell.

Up to now, we have assumed vd to be perpendicular to the main
laser axis. For any flows, the axis along which the beam bending con-
tribution in Eq. (24) lies results from the projection v� of the fluid
velocity vd on the plane perpendicular to the beam main direction.
Importantly, this modification to the classical ray tracing scheme
[Eq. (24)] remains minimal, since it does not modify the main algo-
rithm for ray propagation (described above), apart from adding a
dependence on the beam intensity of the rays’ trajectories. Equa-
tion (24) may be applied in a 2D ray tracing simulation performed in
the (k0, vd) plane (where k0 is the main laser axis) with the 3D beam
bending deflection rates [and thus using ⟨𝒢⟩τSSD, Eq. (23), instead of
its 2D equivalent]. Referred to subsequently as a 2.5D geometry, this
will allow us to estimate the bending rate in a realistic geometry in a
cheap 2D simulation.

To validate the implementation of the beam bending model in
the ray tracing module of Hera, we performed four 2.5D ray trac-
ing Hera simulations. A mesh size of dx = 7.8 μm and dy = 4 μm
was used, along with 103 rays with various values of f♯. All other
simulation characteristics (equations of state, boundary conditions,
and simulation domain) were identical to those of the paraxial sim-
ulations, as described in Sec. III. Illustrated as black triangles in
Fig. 3(a), the centroid deviations resulting from the modified ray
tracing module of Hera [using the fluid beam bending rate, Eqs. (7),
(10), (19), and (23)] reproduce correctly the temporally averaged
theoretical (solid lines) and paraxial (circles) predictions.

It is worth noting that restricting the model to the beam
centroid deviation implies to neglect the contributions to beam
spreading coming from the different deflections caused by the var-
ious speckle intensities and lifetimes. Likewise, the forward Bril-
louin instability45,46,75 and associated plasma smoothing effects may
contribute to reducing the effective speckle waist, thereby affect-
ing the final beam centroid deviation.70 Figure 3(a) demonstrates
that the bending rate decreases faster than 1/ f♯, and so plasma
smoothing effects may greatly worsen the impact of beam bend-
ing on the propagation of the laser. Moreover, our crude mod-
eling of the speckle dynamics does not account for the oscilla-
tions of the coherence time and speckle velocity as characterized
in Ref. 76, which also contribute to the fluctuations in the beam
direction.

B. Quantifying the beam bending
of a realistic pulse in ICF conditions

To quantify the beam bending level under realistic conditions,
we performed a 2D-axisymmetric hydrodynamic simulation with
the Troll code (see Appendix C for details)38 of Hybrid B NIF
Shot N181209,55–57 i.e., with a diamond ablator and a low-gas-fill
hohlraum. No significant amounts of backscattering were measured
during these shots, and so the beam bending may be addressed
here independently from the stimulated backward Brillouin/Raman
instability. One representative time was retained, 6 ns, which corre-
sponds to the main power drive, as illustrated in Fig. 4(a). We will
focus here on the beam bending of the inner cone, whose main axis

FIG. 4. Hydrodynamic simulation performed with the Troll code38 for the Hybrid B
NIF Shot N181209,55–57 illustrated in the frame of the inner cone (y = 0 is the main
inner cone axis), at 6 ns. (a) Total power of main laser drive. (b) Averaged local
ionization number ⟨Zi⟩ (the color map is saturated to 10). (c) Electron temperature
Te (keV). (d) Normalized electron density ne/nc (the color map is saturated to
ne/nc = 0.3). (e) Mach number of the y component of the flow velocity, v�/cs.
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lies on y = 0 and propagates from left to right in Figs. 4(b)–4(e). The
beam bending deflection rate is calculated using the local plasma and
laser parameters ( f♯ = 8), with a speckle coherence time τSSD = 7 ps.
Use is made of the 3D theoretical kinetic predictions of Eqs. (5), (19),
and (23), together with the nonlocal correction of Eq. (10). Note that
we do not use the analytical fit of ⟨𝒢⟩τSSD presented in Appendix D,
but we solve numerically the quadrature of Eq. (23). The TSSD direc-
tion is vertical in the NIF chamber,72 and therefore its direction lies
in the (r, z) plane of the hydrodynamic simulation. Owing to the
weak effect of the PS, we will thus apply our deflection model with
(S, β) = (1.7, 1), according to Table I.

Figures 4(b)–4(e) show the local ⟨Zi⟩, Te, ne/nc, and y compo-
nent of the flow velocity, respectively. Note that the color map in (b)
is saturated to ⟨Zi⟩ = 10, and thus the high-Z gold medium is repre-
sented by the black areas. The map of the y component of velocity,
normalized to the local acoustic speed, suggests that at 6 ns, helium,
carbon, and gold, with electron densities ranging from ne ∼ 0.05 to
ne ∼ 0.2, may be found on the inner beam path with M0 ∼ 1. Indeed,
as the helium gas is being compressed by the expanding ablator
[the green region in Fig. 4(b)] and gold wall [the black region in
Fig. 4(b)], the electron density remains in the 10% critical density
range. Likewise, the electron temperature, higher than 3 keV in these
regions, leads to qualitatively small Landau damping rates and there-
fore to a bending not so far from its large asymptotic limit. Note
that at 6 ns, the density of the expanded window is of the order of
ne ∼ 10−3nc [see Fig. 4(b)], which is too small for speckle-scale beam
bending to occur.

We performed two 2.5D ray tracing Hera simulations using
the plasma profiles from the Troll simulation at 6 ns. These sim-
ulations did not solve the hydrodynamic equations. We used a

domain size of Lx × Ly = 8 × 3 mm2, a mesh size of dx = 9.7 μm and
dy = 11.7 μm, an f -number of f♯ = 8, and a beam waist of 1 mm.
The beam was composed of 103 rays, and all the other simulation
characteristics were identical to those of the paraxial simulations.
Figures 5(a) and 5(c) present the intensity map and the inverse
bremsstrahlung power of the inner cone with the modified scheme
of Eq. (24). These are to be compared with the corresponding clas-
sical ray propagation results in Figs. 5(b) and 5(d). The intensity
profiles evidence a weak impact of the beam bending dynamics on
the pointing direction. When account is taken of the beam deviation
[Fig. 5(a)], the expanding gold bubble around x = 2 mm tends to
deflect the laser toward the ablator. Indeed, Fig. 5(e) shows the local
2.5D bending rate and reveals a slight deflection of ∼ −70 mrad/mm
located in the gold material. Likewise, the compressed helium and a
small part of the ablator tend to deviate the other half of the beam
(by ∼ +50 mrad/mm) in the direction of the gold wall (upward),
thus enhancing the already present focusing effect due to refraction.
The temporal incoherence of the laser is thus not strong enough
to totally suppress the beam bending and compensate for the ther-
mal effects, especially in the gold medium, leading to significant
deflection rates, as illustrated in Fig. 5(e). Quantitatively, the energy
deposition is 0.5% weaker in the gold medium as extracted from
our ray tracing simulation with our beam bending model than with-
out it, and 10% less power is deposited onto the carbon ablator
when the deviation is taken into account. However, the profile of
the laser absorption is modified, being much more peaked around
(x, y) ≃ (4.5, 0) mm when the beam bending is included. Quantita-
tively, ∼0.05% of the incoming laser power is able to leave the gold
bubble in the presence of beam bending, which greatly contrasts with
the ∼2.8 × 10−4% obtained without flow-induced refraction. These

FIG. 5. (a) and (b) Intensity pro-
files log(I[W/cm2

]). (c) and (d) Power
deposited in the plasma through inverse
bremsstrahlung, SB (W/cm2

). (e) 2.5D
deflection rate dθSSD/dx (mrad/mm) as
predicted by Hera. (a), (c), and (e)
show the results predicted by the 2.5D
beam bending rate [Eq. (24) with (S, β)
= (1.7, 1)], while (b) and (d) show the
results from the classical ray tracing
scheme. The material boundaries are
superimposed as black lines.
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numbers, highly sensitive to the beam bending model, seem to be
at least qualitatively consistent with the measurements presented in
another experiment.77

Importantly, the part of the beam that is specularly refracted by
the gold wall is more energetic according to our model than when the
classical ray tracing scheme is used [see Figs. 5(a) and 5(b) around
(x, y) ≃ (6,−1)mm]. The small flow-induced deflections in the gold
bubble seem to be sufficient, at grating incidence, to significantly
modify the penetration depth of the laser in the dense plasma and
its absorption. The resulting deflected beam, of intensity in excess of
1013 W/cm2, could reach the opposite laser entrance hall and there-
fore could lead to possible wave mixing with opposite-side beams.
The striking qualitative similarity with experimental measurements
ascribed to stimulated Brillouin side scatter or the so-called glint77–79

indicates an urgent need to address the impact of beam bending on
the implosion dynamics in ICF experiments.

V. CONCLUSIONS AND PROSPECTS
On the basis of previous work, we have addressed the beam

bending physics of a realistic (RPP, SSD, and PS) high-energy laser
beam propagating under ICF plasma conditions. By mean of large
homogeneous paraxial hydrodynamic simulations, we have con-
structed a 3D ray-tracing model that quantitatively captures the
temporally averaged centroid deviation of realistic beams. The use
of our ray tracing model under ICF Hybrid B conditions reveals
a weak modification of the beam propagation properties as a con-
sequence of speckle-scale beam bending. Our results indicate that
flow-induced deviation in the gold bubble is a good candidate for
explaining the anomalous refraction measurements: the so-called
glint.78,79 Our model may thus be used to predict and assess the
impact of this anomalous refraction on implosion dynamics and
wave mixing processes. The impact of beam bending in other ICF
scenarios is left for future work.

Speckle-scale physics may thus be included in a coarse descrip-
tion of laser light, such as ray tracing-based schemes, opening the
way for a more realistic laser energy deposition model in radiative
hydrodynamic codes. Obtaining more accurate predictions of the
implosion symmetry and bang time without resorting to nonphys-
ical artifacts such as laser power multipliers80 may allow smart ICF
designs81,82 and possible control of deleterious laser–plasma effects.

Our ray tracing model with spectral dispersion has been com-
pared with homogeneous ideal simulations, and so its validity can be
ensured only in smooth density gradients. Furthermore, most wave-
mixing processes are absent from our analysis, although these might
possibly affect the beam deflection and thus bring further complex-
ity to the system.25 According to Fig. 3(a), the speckle-scale beam
bending may be greatly amplified by plasma smoothing effects.70,83

The ICF estimates in Figs. 5(a), 5(c), and 5(e) could thus represents a
lower bound on the realistic flow-induced deflection. Since our study
is limited to the beam centroid deviation, further analyses, includ-
ing forward scattering and beam spreading,46,48,84 are required to
obtain a deeper understanding of all the physical mechanisms that
can affect the beam pointing and subsequent laser energy deposition
region inside the hohlraum.

Furthermore, our theory and simulations in realistic geometries
allow a comparison of the efficiency of various temporal smoothing

techniques that can be applied to achieve control of the beam point-
ing direction. Compared with LSSD, we have confirmed that 1D
TSSD results in an anisotropic deflection rate. The latter can be
substantially reduced by increasing the SSD modulation depth to
reach field coherence times below 2 ps. Although outside the scope
of this study, alternative smoothing strategies such as multicolored
beams85–87 could also be of interest with regard to the beam bending
dynamics.

Finally, a ray tracing-based simulation incorporating our beam
bending model would require evaluation of the quadrature of
Eq. (23) each time a ray exits a cell. The exact calculations seem
numerically too demanding unless one resorts to a tabulation of the
deflection rates or to an accurate fit that would significantly allevi-
ate the computational load. For that purpose, a fit is presented in
Appendix D that should facilitate implementation of a ray tracing
beam bending model in hydrodynamic codes. A radiative hydro-
dynamics simulation of a whole-capsule implosion using our beam
bending model is left for future work.
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APPENDIX A: THREE-DIMENSIONAL HERA
SIMULATION OF GAUSSIAN BEAM BENDING

To validate the predictions of Sec. II C, five 3D Hera simula-
tions of Gaussian beams have been performed with a wavelength
of λ0 = 0.35 μm, a maximum intensity of I0 = 1015 W/cm2 and an
f -number f♯ = 8. The homogeneous fully ionized carbon plasma at
10% of the critical density has a drift velocity along the y direc-
tion at a Mach number M0 = 0.4, 0.8, 1, 1.2, or 1.5, with (Te, Ti)
= (2.5, 1) keV. The size of the simulation domain is Lx × Ly × Lz

= 100 μm × (40 μm)2 and is composed of 50 × 5122 meshes. The
laser is injected from the left boundary at x = 0, and its focal spot
is located at (xfoc, yfoc, zfoc) = (50 μm, 0, 0). The laser has a constant
temporal profile preceded by a 1 ps-long linear rise. Additionally, the
Landau damping operator is calculated in the Fourier space trans-
verse to the main laser direction,50,68,69 and the thermal correction
of Eq. (10) (while setting Ω = 1) is accounted for.

The resulting intensity profiles at t = 10 ps, illustrated in Fig. 6,
reveal a deviation of the beam toward the flow (y) direction. The
theoretical predictions of Sec. II C, which we aim at validating
here, gather all the x dependence of the bending rate into the fit-
ting factor S. Hence, a comparison of the 3D Hera predictions with
Eq. (19) requires that we remove from the simulation results the
influence of the x-Gaussian laser profile. We thus start by isolating
the x-dependent factors (waist and intensity), leading in 3D to

dθ
dx
≃ d2 y

dx2 =
1

[1 + (x − xfoc)2/z2
c ]3/2

dθ0

dx
, (A1)

where zc = π f 2
♯
λ0, and dθ0/dx is the part of the beam bending rate

that is independent of x, thus corresponding to Eq. (16). Hence,
for dθ/dx(x = 0) = y(x = 0) = 0, the deviation is related to dθ0/dx
through

y ≃ 1
[1 + (Lx − xfoc)2/z2

c ]1/2
L2

x

2
dθ0

dx
. (A2)

The value S = 1, imposed in Sec. II C, corresponds to a deviation that
reads y0 = 0.5L2

xdθ0/dx. In summary, to extract the relevant time-
averaged centroid deviation from our 3D Hera simulation, we first
compute the centroid deviation ⟨y⟩� at the exit plane [using Eq. (2)],
divide it by the factor [1 + (Lx − xfoc)2/z2

c ]−1/2 ≃ 0.81, and average
the results between t0 and t0 + 7 ps. We use t0 = 1.3 ps here to

FIG. 6. Intensity profiles (W/cm2
) of a 3D Gaussian laser pulse propagating

through a flowing (M0 = 0.8) fully ionized carbon plasma at 10% to the critical
density as predicted by 3D Hera simulations. (a) Intensity profile in the (x, y)
plane, with the flow velocity along the y axis and the main laser direction along
the x axis. (b) Intensity profile in the exit plane.

account for the time required for the laser to reach the exit plane
of the simulation (∼0.3 ps) and the 1 ps linear rise of the laser time
envelope.

APPENDIX B: THREE-DIMENSIONAL PARAX
SIMULATIONS

The Parax code simulates the propagation of electromagnetic
waves in a plasma.88 The propagation of one fixed polarization
electromagnetic wave is modeled by a single generalized scalar
paraxial equation (B1) for the electric field amplitude E and a wave
equation (B2) for the plasma response in the perpendicular (y, z)
plane:

(2i
ω0

c2 ∂t + 2ik0η∂x + i∂xk0η +∇2
� −

ω2
0

c2
ne − ne0

nc
− νeiω0ne0

c2nc
)E = 0.

(B1)

Here, νei is the electron–ion collision frequency. Stimulated Raman
and Brillouin backscattering do not occur, owing to the presence
of a single paraxial incident wave. However, both filamentation
and forward stimulated Brillouin scattering (FSBS) can grow and
interact. The plasma density is modeled using a fluid description,
where expansion to second order in the field perturbation leads
to an ion-acoustic wave driven by ponderomotive and thermal
effects:88,89

[(∂t + ν + vy∂y)2 − c2
s∇2
�] log( ne

ne0
) = Zi

cminc
∇2
�(AtI). (B2)

Here, vy represents a transverse plasma drift assumed to be along the
y axis, and ν is the ion-acoustic wave damping rate. The logarithm
saturates the density response and thus impedes the blowup of the
self-focusing process that would otherwise be induced by the cubi-
cally nonlinear Schrödinger equation derived from Eq. (B1). Equa-
tion (B2) uses the acoustic type of plasma response and accounts
for the plasma heating using a nonlocal electron transport model
according to Ref. 59. The operator At in the source term is applied
to the laser intensity; it accounts for the inverse bremsstrahlung
heating, the ponderomotive effect, and the nonlocal transport. Its
spectrum in Fourier space for the transverse spatial coordinates
(y, z) uses the fit introduced in Ref. 59.

In the case of PS smoothing, the code models the propagation
of two independent electromagnetic waves (the first polarized along
the y axis and the second along the z axis), but the source term in
Eq. (B2) is computed with the contributions of both electromagnetic
waves.

Equation (B2) has been derived using the small-amplitude den-
sity and temperature hypothesis, namely, dne/ne ≪ 1 and dTe/Te
≪ 1, and the quasistationary temperature hypothesis, namely,
dt(Te) < νeiI0/cnc. In our simulations, the laser propagates into a
2 mm helium plasma that is assumed to be uniform with density
ne(t = 0) = 0.1nc, Te = 2 keV, and Ti = 0.5 keV. The Landau damp-
ing rate has been determined by a kinetic dispersion solver, and
its value is γ0 = 0.031. The laser’s average intensity is ⟨I0⟩ = 2
× 1014 W/cm2. This relatively small value has been chosen to limit
the angular spread of the beam. The transverse and longitudinal
mesh sizes are dy = dz = 0.75λ0 (for λ0.35 μm) and dx = 1.6 μm,
respectively.
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APPENDIX C: AXISYMMETRIC 2D SIMULATION
WITH TROLL

Troll is a 3D arbitrary Lagrangian–Eulerian (ALE) radiative
hydrodynamic code with unstructured mesh.38 The simulation pre-
sented in Sec. IV B was performed in an axisymmetric 2D geometry.
We used the latest CEA tabulated equations for state and opacities,
with a model for NLTE correction of the emissivity. The radiation

transport was solved using an implicit Monte Carlo method and
the heat flux using the Spitzer–Härm model, limited to 10% of the
freestreaming flux. The lasers were simulated using the classical 3D
ray tracing method (without the beam bending model), with inverse
bremsstrahlung absorption, corrected to account for the Langdon
effect. Both Raman and Brillouin backscattering were measured to
be just a few percent, and therefore were not taken into account. No
multipliers were used on the incident laser power.

TABLE II. Polynomial coefficients an,m, bn,m, cn,m in Eqs. (D2)–(D4).

an,m m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 0.025 488 −0.368 322 1.224 227 −0.549 216 0.050 112
n = 1 0.001 769 −0.043 288 0.403 904 −1.498 338 0.667 592
n = 2 −0.113 853 1.603 793 −5.426 916 6.871 689 −2.396 718
n = 3 0.189 056 −2.603 449 8.606 094 −10.111 674 3.370 095

bn,m m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 −0.007 621 0.118 956 −0.355 869 0.163 322 0.015 022
n = 1 −0.088 640 1.126 735 −3.103 982 3.160 460 −1.086 508
n = 2 0.338 779 −4.382 979 12.275 832 −12.029 22 3.862 822
n = 3 −0.448 077 5.745 170 −16.150 09 15.789 91 −5.007 789

cn,m m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 10.029 76 −22.232 38 26.037 80 −14.192 60 2.822 304
n = 1 9.268 230 −42.285 02 70.621 96 −45.765 98 10.012 57
n = 2 −373.594 7 1 539.699 −2 128.128 1 200.225 −237.254 0
n = 3 4444.712 −18 357.01 25 459.51 −14 404.95 2854.991

FIG. 7. Comparison between the fit of
Eq. (D1) (dashed lines) and the exact
calculations (solid lines) for different val-
ues of τSSD. The parameters in (a)–(c)
correspond to a gold plasma (ZAu = 50,
λmfp/ f♯λ0 = 1.47) with γ0 = 0.007, 0.02,
and 0.05, respectively, and those in (d)
to a carbon plasma (ZC = 6, λmfp/ f♯λ0
= 71) with γ0 = 0.05. Te = 3 keV and
ne = 9 × 1026 m−3.
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APPENDIX D: FIT OF EQ. (23) IN THE FLUID
FRAMEWORK

In order to facilitate the implementation of the present beam
bending model in a hydrodynamic code, we introduce here a fit of
the function ⟨G⟩τSSD [Eq. (23)] that appears in the ray tracing model
of Eq. (24). We propose to use the following function defined in the
domain M0 > 0, with kc = 21/2/ f

♯
λ0,

G3 =
Akc

2
aM0 + bM2

0

1 + (M0/c)4 (D1)

where a, b and c are polynomial functions of τSSDcs/ f
♯
λ0 and γ0. They

follow,

a =
3

∑
n=0

4

∑
m=0

an,mγn
0(

τSSDcs

f♯λ0
)

m

, (D2)

b =
3

∑
n=0

4

∑
m=0

bn,mγn
0(

τSSDcs

f♯λ0
)

m

, (D3)

c =
3

∑
n=0

4

∑
m=0

cn,mγn
0(

τSSDcs

f♯λ0
)

m

. (D4)

The value of the coefficients an,m, bn,m, cn,m are given in Table I.
We retain the predictions of the above fit when G3(M0) > 0 and
set it to zero elsewhere. We also use G3(−M0) = −G3(M0) in
the negative Mach number domain. As shown in Fig. 7, this fit
works fairly correctly in the domain 0.007 ≤ γ0 ≤ 0.05, ∣M0∣ < 2.53
and 0.1 ≤ τSSDcs/ f

♯
λ0 ≤ 2 in a mono-species plasma, as shown in

Figs. 7(a)–7(d).
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